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To provide information on the integrability of the Zakharov-Kuznetsov (ZK) 
equation, we obtain, by a generalization of the direct method introduced by 
C!arkson and Kruskal, some new similarity reductions of PDEs and ODEs of 
the ZK equation which governs nonlinear ion-acoustic waves in a magnetized 
plasma. A symmetry group explanation is given by the nonclassical method of 
Bluman and Cole. 

1. INTRODUCTION 

The nonlinear development of ion-acoustic waves in a magnetized 
plasma under the restrictions of small wave amplitude, weak dispersion, 
and strong magnetic fields is described by the Zakharov-Kuznetsov  (ZK) 
equation (Zakharov-Kuznetsov,  1974) 

Q~l) = ut + uux + ux=cx + uxyy = 0 (1) 

Infeld and Frycz (1989) obtained the solitary-wave solutions of (1). 
Only four polynomial conservation laws have been given (Shivamoggi, 
1989, 1990; Infetd, 1985). Shivamoggi (1990) applied the method of  Weiss 
et al. in specialized form to investigate the integrability of  the ZK  equation 
(1) via the Painlev6 property. But up to now, an inverse scattering 
transformation for (1) has not been constructed and one does not have 
much more evidence to confirm its integrability. We need to study the ZK  
equation (1) further. 

In Section 2 we use a generalization of  the direct method to reduce (1) 
to partial differential equations with two independent variables and find 
new reductions. In Section 3 we give the symmetry group-theoretic expla- 
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nation of the results in Section 2 by showing that these reductions may also 
be obtained using the nonclassical method. In Section 4 we discuss the 
reductions of (1) to ordinary differential equations by using a generaliza- 
tion of the direct method. Section 5 is a summary and discussion of our 
results. 

2. R E D U C T I O N S  TO P D E  

In this section we seek reductions of (1) in the special form 

u(x, y, t) = c~(x, y, t) + fl(x, y, t)w(((x, y, t), z(x, t, y)) (2) 

Substituting (2) into (1) and demanding that the results be a partial 
differential equation for w((, ~) imposes conditions on ~, fl, (, ~, and their 
derivatives, the solution of which yields the desired reductions. In the 
determination of ~, fl, ( and z, we have a certain freedom. 

Case 2.1. (~ ~ 0 .  Similar to Clarkson and Winternitz (1991) for the 
KP equation, it is sufficient to seek the similarity reduction in the special 
form 

u(x, y, 0 = ~(x, y, t) + 02( y, t)w(f(x, y, t), z(y,  t)) (3) 

with 

((x, y, t) = OCy, t)x + q~(y, t) (4) 

where e(x, y, t), z(y ,  t), O(y, t), and q~(y, t) are to be determined. Substitut- 
ing (3) and (4) into (1) yields 

O~ t At- ~0~ x "Jr- O~xx x -]- O~xyy ~- (200 t + CCxO2)w 

+ [e03-+ 60@ + 3020yy -b 02(xOt q- fpt)]w( 

+ [6020y(xOy + ~oy) + 03(xOyy + q~yy)lwc~ 

+ 03[02 -I- (XOy -}- ~0y)2]W((~ . -~ 02"CtW,. "4- 02(60yry @ OTyy)W(r 

3 2 , 203(XOy OSww( + 0 %wc~ + + ~%)ZeW,r + 

= 0 (5) 

Equation (5) is a PDE of w((, z) in two independent variables only; for 
the ratios of the coefficients of different partial derivatives and powers of 
w((, z) being functions of ~ and r, these conditions read 

~, + ~c~:, + C~x~:r + C%y = 05F~((, t) 

200, + c~x02 = 05F2(~, t) 

~03 + 60@ + 3 0 2 %  -t- 02(xOt -t- (Pt) = 05F3((,  "c) 

(6) 

(7) 

(8) 
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6020y(xOy + qgy) + 03(xOyy + q~yy = 051-'4(~, 7:) 

05 + 03(xOy + ,&)2 = 05F5(~, 7:) 

02"~t = 05F6(~,  T) 

6020yT:y + 037:yy = 05F7(~, 7:) 
3 2 0 % = 0SFs(~, 7:) 

203(XOy -~- ~Oy)Ty = 05F9(~, r)  

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

where F~({, 7:), i = 1, 2 , . . . ,  9, and some functions of ({, 7:) are to be 
determined. 

Due to the freedom in choosing ~, we may set F3(~, 7:) = 0 without loss 
of generality. From (8), we get 

xO t + ~o, 6 (15) 
~- 0 0 

To obtain the solutions of (6)-(14), there are two subcases to con- 
sider. 

Case 2. la. 7:y ~ O. By (13) and the freedom of ~, one can easily get 

7: = t y O(rl, t) dq (16) 
do 

and 

F8(~, 7:) = 1 (17)  

Substituting (16) into (12),  we see that the freedom of O(y, t) implies 

O(y, t) = O(t) (18) 

and 

F7({, 7:) = 0 (19) 

SO 

7: = O(t)y + ~9(t) (20) 

with functions O(t) and q~(t) to be determined. 
By using (11) and (20), we obtain I~6(~ ,  7:) = 7:, and O(t) and ~,(t) satisfy 

0t = 04 (21) 

~, = 03~b (22) 

with general solution 

0 = [ - -3 ( t  + to)] -'/3 

= c , [ - 3 ( t  + to)] -'/3 

(23) 

(24) 
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F r o m  (14), without  loss o f  generality, we obtain 

r t) = h(t) (25) 

where h(t) satisfies 

h .  - 2q93ht - 2r = 0 (26) 

It is easy to get the solutions o f  (26), 

h(t) = C2(t + to) 2/3 or h(t) = C2(t + t0)-l/3 (27) 

where t o and C2 are arbitrary constants,  and (5) reduces to 

~w~ + w ~  + w ~  + ww~ + w - 23 = 0 (28) 

Obviously w = ~ is a solution o f  (28). 
Case 2.1b. ry = 0 [i.e. ~ = r(t)]. Similar to case 2.1a, one can obtain 

the solutions o f  ( 6 ) - ( 1 4 )  as follows: 

0 = 0o, ~ = O, ~o =PoY + do, ~ = 03t, ~ = Oox +PoY + do (29) 

F 1 = F 2 = F 3 = F 4 = F 7 = F 8 = 1 "  9 = F 6 -- 1 = F 5 - 1 002 

= 0 (30) 

here 0o # 0, and Po and do are arbitrary constants. In this case, (5) becomes 
well-known K d V  equat ion 

[ (P~ w ~ + w w ~ +  1 + \ 0 o ,  ] j r162 (31) 

Case 2.2. ~x # O. With no loss o f  generality, we set ~ = y, ~ = z, i.e., 
we seek a solution o f  the Z K  equat ion in the special form 

u = e(x, y, t) § fl(x, y, t)w(y, t) (32) 

Substituting (32) into equat ion (1) yields 

0~, -}- O~O~ x § O~xx x § O~xyy § [~, § (0~) x § flxxx Ar flxyy]W 

+ 2flxyWy + flxWyy § ~wt § ~ x  W2 = 0 (33) 

This is a partial differential equat ion for w(y,  t); if the ratios o f  coefficients 
o f  different derivatives and powers o f  w are functions o f  t and y, the 
coefficient o f  Wyy and w, yields 

fix = fl~h (Y, t) (34) 

where ~h(Y, t) is to be determined; the integration gives 

fl = exp(xt h (y,  t)) (35) 
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Now consider the ratio of the coefficients of w 2 and w,, i.e., 
rh(y, t )exp(xrh(y,  t)) is a function of y and t if and only if ql(Y, t )=0 .  
Hence/3 = 1, and equation (33) becomes 

Wt § O{xW § O~t § O~O~x § ~xxx § Ogxyy "~ 0 (36) 

This is a partial differential equation for w with independent variables y 
and t provided that 

~x = q2(Y, t) (37) 

~:t § ~gx "4:- ~xxx § ~xyy ----- ~13(Y, t) (38) 

where t/2(y, t) and r/3(y, t) are to be determined. The integration of (37) 
yields 

o~ = rf2(y, t)x (39) 

Combining (39) and (38), we obtain 

1 
q2 - t + D, (y ) '  73 = 't +/)~ (y) (40) 

YY 

with an arbitrary function D~ (y). In this case (36) reduces to 

1 2[D,(y)] 2 D';(y) 
w t + t + D ~ ( y )  WJr [t+D~(Y)] 3 [ t+D~(y)]2=O (41) 

with solution 

2[D'~(y)] 2 + D~(y)ln(t + D, (y)) 
w ---= It + D~(y)] 2 t + Dl(y)  

where D2(y) also is an arbitrary function. 

D , ( y )  
+ - -  (42)  

t + De(y) 

3. R E D U C T I O N S  TO P D E  BASED O N  C O N D I T I O N A L  
SYMMETRIES 

In this section, by means of the nonclassical method due to Blu- 
man and Cole (1969), we reduce the Zakharov-Kuznetsov equation 
to PDEs with two independent variables, i.e., we give the group ex- 
planation for the results of Section 2. Now we shall look for a transforma- 
tion group leaving simultaneous solutions of two equations, namely (1) 
and 

Q~2) = Tu, + ~Ux + rlUy - q~ = 0 (43) 

where ~, ~, t/, and cp are functions of t, x, y, and u to be determined. 
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The vector  fields corresponding to the Lie group o f  local point  trans- 
format ions  leaving the joint  solution set o f  (1) and (43) invariant have the 
form 

X = ~ +  ~3x + t/ff-yy + qo ff-uu (44) 

We start by constructing the prolongat ion  of  X, i.e., 

pr(3)X = X + ~o' - -  + q ) 7 -  + dp . . . .  § (D :r (45) 
OU t X ol, lx 3Uxx x OUxyy 

where the functions q~', q~X, q~XXx, and ~0 xyy a r e  functions of  ~, ~, r/, q~, and 
their derivatives of  t, x ,  and y;  the prolongat ion  is then used in the two 
equations and the resulting expressions are required to vanish on the 
solution set o f  the two equations,  i.e., 

pr(3)X(Q (l)) Io'" = 0,0 ̀ 2, = o = 0 (46) 

pr( I )X(Q (2~) IQ~l~ = 0.Q~2~ = o = 0 (47) 

Equat ion  (47) is satisfied automatically; (46) leads to a set of  determining 
equations which must  then be solved; there are several cases to consider. 

Case 3.1. r va O. Without  loss of  generality, suppose ~ = 1. MAC-  
S YMA provides determining equations; we obtain all constraint  condi- 
tions, and the remaining nontrivial  equat ions are 

= cfft)x + fl(t), 17 = 6(t)y  + A(t), q~ = 7(t)u + 2 (0  (48) 

7 
c~ = 6 = - - 5 '  o~; + 3a 2 = 0, A; + 3~A = 0 ,  2, + 3c~2 = 0  

/3, - - 2  + 3eft = 0 

with general solution 

1 D 3 
- Z = 6  = c ~ - - -  A - - -  

2 3(t + to) '  3(t + to) 

2-- D4 fl = o5 
t + to ' t + to 

(49) 

(50) 

§ --  u §  r 

where D 3, D4, and D5 are the integration constants. So after multiplying by 
t + to, we find that  the vector field X reads 

X = ( t + t ~  + x + D 5  + -3 y + D 3  ~3y 



Zakharov-Kuzne~ov Equation 105 

By solving the characteristic equations, we can obtain the similarity 
variables; the similarity reduction we have derived is just case 2.1a of 
Section 2. 

Case 3.2. �9 -- 0, t / ~  0. With no loss of generality, we put t / =  1; by 
solving the constraint conditions, we get 

r = rio, q' = 20 (52) 

and the vector field X reads 

X =/~o + ~yy + 2 (53) 

From this reduction, the reduction case 2.1b of Section 2 follows immedi- 
ately. 

Case 3.3. ~ = 0, t / =  1. Without loss of generality, we set ~ = 1. Similar 
to cases 3.1 and 3.2, the constraint equations become simple 

where 2 satisfies 

with general solution 

u = 2(t, x ,  y)  (54) 

2 x = 0, 2t § ,~2 ~_ 0 (55)  

1 
2 - (56) 

t + D6(y) 

where D6(y ) is an arbitrary function of y. Obviously, this reduction reduces 
to case 2.2 of Section 2. 

4. R E D U C T I O N S  TO O D E  

In this section, we discuss the reductions of the ZK equation (1) to 
ordinary differential equations. Generally, there are two ways to do this, 
either by going directly from the ZK equation to ODEs in one step, or by 
considering reductions of  the partial differential equations with two inde- 
pendent reductions in Section 2, which is a two-step procedure. Below we 
only give the results of  applying the generalization of the direct method to 
get one-step reductions. 

To obtain a one-step reduction of  (1), we seek a reduction in the 
special form 

u(x ,  y ,  t) = ~(x,  y ,  t) § fl(x,  y ,  t )w(z(x ,  y ,  t)) (57) 
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with ~, 
Substituting (57) into (1), we get 

~, + ~ x  + ~xxx + ~xyy + [~, + (~)x  + ~xxx + ~xy~]w 

+ (Bz, + c~Zx + 3~xxZx + 3~xZ~ + Bzx~ + 2/LyZ,) +/Lz,y 
+ ~ z ~  + 2~Zx~ + BZxyyWz + B ~ w  2 + ~2z~WWz 

+ [3/~xz~ + 3~ZxZxx + ~zz~ + 2~yZxZy + fl(ZxZy)ylwz z 

+ ~Zx(Z~ 2 + Zy)W=z = 0 (58) 

To determine the reductions, we omit the details of  analysis, and only list 
the results. 

Case 4.1. z x r  z y r  Zxy r  In this case, we have 
reduction to an ordinary differential equation given by 

1 
U = - - D  7 + ( y  q_yo) 2 w(z(x,  y, t)) 

where D 7 and Yo are arbitrary constants, and 

1 D8 + D7 t 
z(x,  y, t) - x -t (59) 

Y +Y0 Y +Yo 

and for two arbitrary constants, w satisfies 

Z 2 - t - ~  Wzz -- I O z w  z + 10w + ~ - + D 8  = 0  (60) 

This reduction also can be obtained from case 2. la by a one-step reduction 
procedure. 

Case 4.2. zx ~ O, Zy ~ O, Zxy = 0. The reduction in this case is given by 

u = e(x, y, t) + B(t)w(z(x, y,  t)) (61) 

where e,/~, and z are determined by 

= - ( x + y )  0~ ~, 0 0 ' ~ = 02(0, z = (x +y)O(t)  + a(t) (62) 

with O(t) and a(t) satisfying 

0t = Fo 04 (63) 

Off. -- 20tff t = 206(F2o " + Fl) (64) 

where Fo and F~ are two arbitrary constants and w satisfies 

OS(2w '' + ww') + O0~w + cz, + c~x = 0 (65) 

Qu 

fl, w, and Z functions of indicated variables to be determined. 

a generic 
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Case 4.3. z x ~ O, zy = O. In this case, the reduction can be obtained 
from case 4.2 by using x instead of x + y, but with w satisfying 

OS(w '' + ww' )  + OOtw + c~t + c~ex = 0 (66) 

This reduction is just the same as the reduction of the KdV equation 
(Clarkson and Kruskal, 1989, p. 2211). 

Case 4.4. z x = O, zy = 0, i.e., z = z( t)  = t. In this case (58) reduces to 

~, + ~ x  + ~xxx + ~yy + [~, + (~ )~  + ~x~ + ~xy~]w + ~w, + ~ w  2 = o 
(67) 

Hence, the ZK equation (1) has the reduction 

u = - - C , ( y )  + (x  + C, ( y ) t  + C2(y ) )w( t )  (68) 

with two arbitrary functions C1(y)  and C2(y), and w satisfies 

w t + w 2 = 0 

with solution 

1 
w - (69) 

t + t o  

From the point of view of the symmetry group, we can easily give the 
interpretation for these reductions, but omit it here. 

5. SUMMARY AND DISCUSSION 

Originally, Ablowitz et  al. (1980)  conjectured that a nonlinear partial 
differential equation is integrable if all its exact reductions to ODEs have 
the Painlev6 property, but this approach poses the obvious operational 
difficulty of finding all the exact reductions. Clarkson and Kruskal (1989) 
introduced a valid method, the direct method, which has been successfully 
applied to obtain new symmetry reductions and exact solutions for several 
physically significant PDEs (Clarkson and Kruskal, 1989; Lou, 1990, 1992; 
Lou and Ruan, 1993; Clarkson and Winternitz, 1991; Nucci and Clarkson, 
1992). 

Although the integrability of the ZK equation has been studied by 
several authors (Infeld and Frycz, 1989; Shivamoggi, 1989, 1990; Shiva- 
moggi and Rollins, 1991), we do not know whether the ZK equation is 
integrable. In this paper, to provide some information about the integrabil- 
ity of the ZK equation, we have derived some new reductions to PDEs and 
ODEs by the direct method. Following the method of Weiss et  al. (1983),  
we find that the reduction equation (28) possesses the conditional Painlev6 
property and equation (31) is the well-known KdV equation and thus has 
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the Painlev6 property.  According to Clarkson and Kruskal  (1989), the 
reduct ion equations (65) and (66) possess the Painlev6 property.  It  is 
worthwhile to notice that the solution o f  (33) contains an algebraic branch 
point  and an algorithmic branch point; this usually exists in an integrable 
system. 

In Section 3 we gave the symmetry  group interpretation for the results 
o f  Section 2, by the nonclassical method due to Bluman and Cole. 
Generally, the nonclassical me thod  is more  general than the direct method 
(Nucci  and Clarkson,  1992). It  is possible that we have not  found all the 
reductions o f  the Z K  equation, which we leave to further study. 
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